UP CONVERTER + QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION SYSTEMS

DESCRIPTION

The $\mu \mathrm{PC} 8104 \mathrm{GR}$ is a silicon monolithic integrated circuit designed as quadrature modulator for digital mobile communication systems. This modulator consists of 1.9 GHz up-converter and 400 MHz quadrature modulator which are packaged in 20 pin SSOP. The device has power save function and can operate 2.7 to 5.5 V supply voltage, therefore, it can contribute to make RF block small, high performance and low power consumption.

FEATURES

- 20 pin SSOP suitable for high density surface mounting.
- High linearity up converter is incorporated; $\mathrm{PrFout}_{\text {(sat) }}=-6 \mathrm{dBm}$ TYP.
- Low phase difference due to digital phase shifter is adopted.
- Wide operating frequency range. Up converter; frFout $=800 \mathrm{MHz}$ to 1.9 GHz

Modulator $;$ fmodout $=100 \mathrm{MHz}$ to 400 MHz , f/Q $=\mathrm{DC}$ to 10 MHz

- External IF filter can be applied between modulator output and up converter input terminal.
- Supply voltage: Vcc $=2.7$ to 5.5 V
- Equipped with power save function.

APPLICATION

- Digital cordless phones
- Digital cellular phones

ORDERING INFORMATION

PART NUMBER	PACKAGE	SUPPLYING FORM
μ PC8104GR-E1	20 pin plastic SSOP	Embossed tape 12 mm wide. QTY $2.5 \mathrm{kp} /$ Reel. Pin 1 indicates pull-out direction of tape.

[^0]
Caution electro-static sensitive device

[^1]
INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS (Top View)

APPLICATION EXAMPLE

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	TEST CONDITION
Supply Voltage	V_{cc}	6.0	V	$\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Power Save Voltage	V PS	6.0	V	$\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Power Dissipation	PD_{D}	430	mW	$\mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}^{\text {Note1 }}$
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note 1: Mounted on $50 \times 50 \times 1.6 \mathrm{~mm}$ double copper clad epoxy glass board

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Supply Voltage	Vcc	2.7	3.0	5.5	V	
Operating Temperature	T_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	
Up Converter RF Frequency	$f_{\text {frout }}$	0.8		1.9	GHz	
Up Converter Input Freq.	fupConin	100		400	MHz	
Modulator Output Frequency	fmodout					
Lo1 Input Frequency	fLotin					$\mathrm{P}_{\text {Lotin }}=-10 \mathrm{dBm}$
Lo2 Input Frequency	flozin	800		1800	MHz	$\mathrm{P}_{\text {Lozin }}=-10 \mathrm{dBm}$
I/Q Input Frequency	f/ain	DC		10	MHz	Pl/ain $=600 \mathrm{mV}_{\text {p-p }}$ MAX (Single ended)

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}$, Unless Otherwise Specified Vps $\geq 1.8 \mathrm{~V}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
UP CONVERTER + QUADRATURE MODULATOR TOTAL						
Total Circuit Current	Icctotal	18	28	37	mA	No input signal
Total Circuit Current at Power-Save Mode	$1 \mathrm{lc}($ PS $)$ total		0.1	10	$\mu \mathrm{A}$	VPS $\leq 1.0 \mathrm{~V}$
Total Output Power	Prfout	-18.5	-13.5	-8.5	dBm	$\begin{aligned} & \mathrm{I} / \mathrm{Q} \mathrm{DC}=1.5 \mathrm{~V} \\ & \text { P//ain }^{2} 500 \mathrm{mV}_{\mathrm{ppp}}(\text { Single ended }) \end{aligned}$
Lo Carrier Leak ${ }^{\text {Noe2 }}$	LOL		-40	-30	dBc	
Image Rejection (Side Band Leak)	ImR		-40	-30	dBc	

Note 2: Lo1 + Lo2

STANDARD CHARACTERISTICS FOR REFERENCE

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.0 \mathrm{~V}\right.$, Unless Otherwise Specified VPS $\geq 1.8 \mathrm{~V}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
UP CONVERTER BLOCK						
Up Con. Circuit Current	Iccupcon		12		mA	No input signal
Up Con. Circuit Current at Power-Save Mode	$\mathrm{Icc}($ PS $)$ UPCon			5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PS}} \leq 1.0 \mathrm{~V}$
Conversion Gain	CG		4		dB	$\mathrm{ffFout}=1.9 \mathrm{GHz}$
Maximum Output Power	PrF(sat)		-6		dBm	fupConin $=240.0 \mathrm{MHz} / 240.2 \mathrm{MHz}$
Output Intercept Point	OIP3		0		dBm	
QUADRATURE MODULATOR BLOCK						
MOD. Circuit Current	Iccmod	10	16	21	mA	No input signal
MOD. Circuit Current at Power-Save Mode	Icc(PS)MOD			5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {PS }} \leq 1.0 \mathrm{~V}$
Output Power	Pmodout		-16.5		dBm	$\begin{aligned} & \text { I/Q DC }=1.5 \mathrm{~V} \\ & \text { P//ain }=500 \mathrm{mV}_{\mathrm{ppp}}(\text { Single ended }) \end{aligned}$
Lo1 Carrier Leak	LOL		-40	-30	dBc	
Image Rejection (Side Band Leak)	ImR		-40	-30	dBc	
I/Q 3rd Order Intermodulation Distortion	Імз/Q		-50	-30	dBc	
I/Q Input Impedance	ZıQ		20		k Ω	$\begin{aligned} & \text { I/Q DC }=1.5 \mathrm{~V} \\ & \text { P//Qin }=500 \mathrm{mV}_{\text {p-p }}(\text { Single ended }) \\ & (\mathrm{I} \rightarrow \overline{\mathrm{I}}, \mathrm{Q} \rightarrow \overline{\mathrm{Q}}) \end{aligned}$
I/Q Bias Current	liga		5		$\mu \mathrm{A}$	
Lo1 Input VSWR	Z Lo1		1.2:1		X:1	
Power Save Rise Time	TPS(RISE)		2.0	5.0	$\mu \mathrm{s}$	$\mathrm{VPS}_{\text {(OFF) }} \rightarrow \mathrm{VPS}_{\text {P(ON) }}$
Power Save Fall Time	TPS(FALL)		2.0	5.0	$\mu \mathrm{s}$	$\mathrm{VPS}_{\text {(ON) }} \rightarrow \mathrm{V}_{\text {PS(OFF) }}$

PIN EXPLANATION

Note In case of that I/Q input signals are single ended.
Of course, I/Q signal inputs can be used either single endedly or differentially with proper terminations.

PIN EXPLANATION

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	ASSIGNMENT	SUPPLY VOL. (V)	$\begin{aligned} & \text { PIN } \\ & \text { VOL.(V) } \end{aligned}$	FUNCTION AND APPLICATION		EQUIPMENT CIRCUIT
8 10	GND for Upconverter	0	-	Connect to the ground with minimum inductance. Track length should be kept as short as possible.		
11	Lo2in	-	2.0	Bypass of Lo2 input. Grounded through external capacitor.		
12	Lo2in	-	0	Lo2 input of Up-converter. This pin is high impedance input.		
13	Vcc for Upconverter	2.7 to 5.5	-	Supply voltage pin for Upconverter.		
9	RFout	V cc	-	RF output from Up-Converter. This pin is open collector output.		
14	UpConin	-	2.0	IF input for Up-converter. This pin is high impedance input.		
15	$\overline{\text { UpConin }}$	-	2.0	Bypass of IF input. Grounded through external capacitor.		
17 18	GND	0	-	Connect to the ground with minimum inductance. Track length should be kept as short as possible.		
19	Power Save	VP/S	-	Power sav controlled bias as fol	control pin can be N/SLEEP state with s;	(19)
20	Vcc for Modulator	2.7 to 5.5	-	Supply voltage pin for modulator. Internal regulator can be kept stable condition of supply bias against the variable temperature or Vcc.		

[^2]EXPLANATION OF INTERNAL FUNCTION

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5}^{\circ} \mathrm{C}\right.$)
Unless otherwise specified $V_{C C}=V_{P S}=3 \mathrm{~V}, \mathrm{I} / \mathrm{Q} D C$ offset $=\overline{\mathrm{I}} / \bar{Q} \mathrm{DC}$ offset $=1.5 \mathrm{~V}, \mathrm{I} / \mathrm{Q}$ Input Signal $=500 \mathrm{mV} \mathrm{V}_{\mathrm{p}}$ (single ended), PLotin $=-10 \mathrm{dBm}, \mathrm{P}_{\mathrm{Lozin}}=-10 \mathrm{dBm}$, (continuous wave)

[UP CONVERTER BLOCK]

SUPPLY VOLTAGE vs CONVERSION GAIN

[UP CONVERTER BLOCK]

[UP CONVERTER BLOCK]

Lo2 INPUT POWER vs CONVERSION GAIN

[UP CONVERTER BLOCK]
SUPPLY VOLTAGE vs CONVERSION GAIN

[UP CONVERTER BLOCK]

[UP CONVERTER BLOCK]
Lo2 INPUT POWER vs CONVERSION GAIN

[MODULATOR BLOCK]
Lo1 INPUT POWER vs OUTPUT POWER, LOCAL LEAK, IMAGE REJECTION, I/Q 3RD ORDER INTERMODULATION DISTORTION

[MODULATOR BLOCK]
I/Q INPUT SIGNAL vs OUTPUT POWER, LOCAL LEAK, IMAGE REJECTION, I/Q 3RD ORDER INTERMODULATION DISTORTION

[MODULATOR + UP CONVERTER]

I/Q INPUT SIGNAL vs VECTOR ERROR, MAGNITUDE ERROR, PHASE ERROR

[MODULATOR BLOCK]
Lo1 INPUT FREQUENCY vs OUTPUT POWER, LOCAL LEAK, IMAGE REJECTION, I/Q 3RD, ORDER INTERMODULATION DISTORTION

[MODULATOR BLOCK]

Lo1 INPUT FREQUENCY vs VECTOR ERROR, MAGNITUDE ERROR, PHASE ERROR

[MODULATOR + UP CONVERTER]
TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM

[MODULATOR BLOCK]
TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM

[MODULATOR + UP CONVERTER]
[MODULATOR BLOCK]
TYPICAL $\pi / 4$ DQPSK MODULATION OUTPUT SPECTRUM <PDC> 42 kbps, RNYQ $\alpha=0.5$, MOD Pattern <PN9>

*** Multi Marker List ***
No. 1: 1.4999000 GHz -72.00 dB
No. 2: $1.4999500 \mathrm{GHz}-66.00 \mathrm{~dB}$
No. 3: 1.5000500 GHz -68.75 dB
No. 4: $1.5001000 \mathrm{GHz}-72.00 \mathrm{~dB}$

*** Multi Marker List ***
No. 1: $239.9000 \mathrm{MHz}-76.50 \mathrm{~dB}$
No. 2: $239.9500 \mathrm{MHz}-70.50 \mathrm{~dB}$
No. 3: $240.0500 \mathrm{MHz}-71.00 \mathrm{~dB}$
No. 4: $240.1000 \mathrm{MHz}-75.75 \mathrm{~dB}$

TYPICAL $\pi / 4$ DQPSK MODULATION OUTPUT SPECTRUM <PHS> 384 kbps, RNYQ $\alpha=0.5$, MOD Pattern (PN9)

*** Multi Marker List ***
No. 1: $1.899100 \mathrm{GHz}-69.50 \mathrm{~dB}$
No. 2: $1.899400 \mathrm{GHz}-69.00 \mathrm{~dB}$
No. 3: $1.900600 \mathrm{GHz}-69.00 \mathrm{~dB}$
No. 4: $1.900900 \mathrm{GHz}-69.50 \mathrm{~dB}$

> *** Multi Marker List ***

No. 1: $239.100 \mathrm{MHz}-68.75 \mathrm{~dB}$
No. 2: $239.400 \mathrm{MHz}-68.25 \mathrm{~dB}$
No. 3: $240.600 \mathrm{MHz}-68.25 \mathrm{~dB}$
No. 4: $240.900 \mathrm{MHz}-69.00 \mathrm{~dB}$

RFout OUTPUT IMPEDANCE

Lo2in INPUT IMPEDANCE

MODout OUTPUT IMPEDANCE

UP CON. in INPUT IMPEDANCE

Lo1in INPUT IMPEDANCE

TEST CIRCUIT
(fRF = 1.9 GHz)

[^3]
TEST BOARD

PACKAGE DIMENSIONS

* 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)

detail of lead end

NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

NOTE ON CORRECT USE

(1) Observe precautions for handling because of electrostatic sensitive devices.
(2) Form a ground pattern as wide as possible to keep the minimum ground impedance (to prevent undesired oscillation).
(3) Keep the track length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.g. 1000 pF) to the Vcc pin.
(5) $\bar{I}, \bar{Q} D C$ offset voltage should be same as the I, Q DC offset voltage (to prevent changing the local leak level with power save control.)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

μ PC8104GR

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below ($210^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{\text {Note }}$: None	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{\text {Note }}$: None	VP15-00-3
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below Flow time: 10 seconds or below, Number of reflow process: 1, Exposure limit ${ }^{\text {Notes }}$: None	WS60-00-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or below Flow time: 3 seconds/pin or below, Exposure limit ${ }^{\text {Note }}$: None	

Note Exposure limit before soldering after dry-pack package is opened.
Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution Apply only a single process at once, except for "Partial heating method". For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E)

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
[MEMO]

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

[^0]: * For evaluation sample order, please contact your local NEC sales office. (Order number: $\mu \mathrm{PC} 8104 \mathrm{GR}$)

[^1]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

[^2]: โ------------- : Externally

[^3]: $\mathrm{f}: \mathrm{DC}$ to hundreds kHz
 A: $0.5 \mathrm{~V}_{\mathrm{ppp}}(\mathrm{I}, \mathrm{Q}$ only $)$
 $\overline{\mathrm{V}}: 1.5 \mathrm{~V}(\mathrm{I}, \overline{\mathrm{I}}, \mathrm{Q}, \overline{\mathrm{Q}})$

